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The Harris functional applied to surface and vacancy 
formation energies in aluminium 

M W Finnis 
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 1000 Berlin 33, 
Federal Republic of Germany 

Received 11 August 1989 

Abstract. Non-self-consistent calculations of total energies using the Hohenberg-Kohn- 
Sham functional and the approximate functional of Harris have been made for a three-layer 
(111) slab of aluminium and compared to fully self-consistent calculations. The norm- 
conserving pseudopotential of Bachelet, Hamann and Schliiter was used. The Harris total 
energy for the slab, which is calculated from an input charge density constructed by super- 
imposing free atomic charge densities, is closer to the self-consistent energy for reasons 
which are discussed in detail. Nevertheless, the corresponding Harris surface energies are 
not sufficiently accurate to be useful. By renormalising the atomic charge densities which 
are superimposed to form the input charge density, in particular by pushing charge from the 
tails towards the cores, the surface energy from a self-consistent calcuiation can be accurately 
reproduced by the Harris functional. Furthermore the Harris functional with the same 
renormalised atoms accurately re-produces the surface-layer contraction and also the for- 
mation energy of a vacancy (to within 0.01 eV) obtained from self-consistent calculations. 

1. Introduction 

It is now possible to calculate from first principles the total ground state energies of small 
clusters of atoms, or of periodic systems with up to a few tens of atoms per unit 
cell, using the Hohenberg-Kohn-Sham (HKS) density functional formalism. The only 
essential approximation involved is the local density approximation, according to which 
the exchange and correlation energy of an inhomogeneous electron gas takes the form 
J drn(r)E,,(n(r)), where ~ ~ ~ ( n )  is the exchange and correlation energy per electron in a 
uniform electron gas of density n ,  a quantity which is now well known for the range of 
densities of physical interest (Ceperley and Alder 1980). The effective one-electron 
potential is constructed from a charge density which is constructed from wavefunctions 
which are solutions of the one-electron Schrodinger equation, and this process is iterated 
to self-consistency. Furthermore, in favourable cases the self-consistent total energy 
may be minimised with respect to the atomic positions or the dynamics of the atoms can 
be followed, using for example the method devised by Car and Parrinello (1985). 
The Ielative energies and predicted structures obtained by self-consistent methods are 
generally reliable, but the calculations are computationally very demanding. 

For this reason, and with a view also to obtaining physical insight, it is continuing 
interest to seek approximate schemes based on the Hohenberg-Kohn-Sham density 
functional formalism. Two possible non-self-consistent schemes which have been sug- 
gested by previous authors are investigated here, with particular attention to the one 
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suggested by Harris (1985) and studied independently by Foulkes (1987). The approxi- 
mate schemes start with a guess for the electronic charge density, and solve the Kohn- 
Sham-Schrodinger equation for the electronic wave functions. The energy functionals 
we are considering are constructed from the results of this solution, with no iterations 
towards self-consistency . 

The obvious initial charge density to choose is that obtained by superimposing the 
free atom charge densities. With this prescription Harris showed that his functional gives 
a good account of the bond lengths and vibrational frequencies of anumber of homopolar 
dimers. Polatoglou and Methfessel(l988) tested the Harris (H) functional on the cohes- 
ive properties of a number of solids (Be, Al, V, Fe, Si and NaCl). They calculated 
cohesive energies, lattice constants and bulk moduli, and found that the deviations from 
the values obtained by the much more costly self-consistent calculations were quite 
small, e.g. up to 15% in the case of the bulk modulus of V, with generally better 
agreement for lattice constants than for bulk moduli. It is particularly noteworthy that 
the ionic crystal NaCl is no worse described than the metals by this model based on 
superimposing neutral atom charge densities. 

Foulkes (1987) and Foulkes and Haydock (1989) also illustrated the accuracy of this 
functional for the dimers H-H, He-He, H-He and Ge-Ge, and studied in detail the 
derivation of a simple tight-binding model from it. The Harris model was used by 
Sutton et a1 (1988) as a basis for deriving the tight-binding bond model, which involves 
simplifications such as the two-centre approximation and a limited basis of localised 
orbitals. An important assumption in the practical application of this and other tight- 
binding models is that part of the total energy can be represented as a sum over pairs of 
atoms of a repulsive interatomic potential. The derivation of such a term follows from 
the assumption of superimposed spherical atomic-like charge densities from which the 
electrostatic energy is obtained within the Harris functional. It is therefore important to 
understand in what situations the Harris functional is reliable if one wants to justify 
schemes such as these which are based on further simplifications to it. 

A more obvious approximation to the total energy than the Harris functional is 
simply given by the HKS functional without iterating beyond the first solution of the 
Schrodinger equation. This prescription, with the input charge density constructed 
by superimposing atomic charge densities, was successfully applied for example by 
Chelikowski and Louie (1984) to calculate the bulk properties of diamond. It might be 
expected to perform better than the Harris model, since unlike the latter it uses the 
output wavefunctions in its construction as described in the following section. It has the 
further attraction of providing a variational upper bound to the self-consistent energy. 
However, in practice, as we shall see, the Harris model is often the more accurate. 

The present paper puts these approximate schemes, which are described in detail in 
the following section, to a stringent test, by calculating the surface energy of a (111) 
three-layer slab of aluminium. This test case is of particular interest because there are 
already three published calculations which give somewhat different answers, notably in 
the sign of the surface relaxation (Payne et aZ1989b, Feibelman 1983, Batra et a1 1986). 
As will be seen, the Harris functional gives an excellent account of the surface energy 
and the surface relaxation, but only when the starting ‘atoms’ are renormalised. Fur- 
thermore, the renormalised atoms and the Harris functional also describe the vacancy 
formation energy accurately in comparison with a self-consistent calculation (the error 
is about 0.01 eV), and even give a more accurate energy for the dimer than the Harris 
functional with superimposed free atom charges. The physical reasons for these con- 
clusions are discussed. 
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2. Approximate density functionals 

The total energy of a system of electrons and ions is described by the minimum of the 
Hohenberg-Kohn-Sham energy functional 

E H K S [ n ]  = q n ]  + 1 nVext +i 11 fi + J”nExc + Eim. 

The first term is the kinetic energy of non-interacting electrons having the density n. Vex, 
is the potential of the ions. The third and fourth terms represent the Hartree and 
exchange-correlation energy of the electrons. The final term is the mutual electrostatic 
interaction energy of the ion cores which will not play any part in following discussion, 
since it is independent of the functional used to describe the electrons. The charge 
density is expressed as 

where for the ground state the wavefunctions v i  are solutions of the single-particle 
Kohn-Sham Schrodinger equation 

- i O 2 q l i  + Veff?) i  = & ; V i  (3) 
with an effective potential 

and p xc(n) is the local exchange-correlation potential 

P xc (n)  = (d /dn)[nExc (n>l. ( 5 )  
We would like the occupancies f i  to take the value 2 for energies E ,  below the Fermi 
energy and 0 for higher energies. However, this sharp Fermi cut-off leads to well-known 
difficulties in the integration of quantities over the occupied states within the Brillouin 
zone. The solution employed here is to smear out the Fermi energy with a fictitious 
temperature T ,  which improves the accuracy of the sampling method of k-space inte- 
gration. In the finite temperature theory which I have used for calculations the occu- 
panciesf, are determined by the Fermi factors 

f l  = 2/ [exp(Pk,  - E d )  + 11 (6) 

where 
/3 = l / k B  T. 

The self-consistent solution is obtained at a minimum of the free energy A defined by 
A = E HKS [n] - TS 

S = - 2 k s  E [ f l  lnfL +( l - fL) ln( l - f1) ] .  (8) 

(7)  
where the entropy is defined by 

I 

The estimated zero-temperature limit of the energy functional, which is the final result 
of the calculations is then 

EHKS(T= 0 )  21 E H K S ( T )  - T S / 2  (9) 
as discussed by Gillan (1989). 



334 M W Finnis 

If we start with a guessed input charge density nin, usually constructed by super- 
imposing the calculated charge densities of free atoms, we can solve the Kohn-Sham 
Schrodinger equation with the effective potential Veff[nin] to obtain what we call output 
wavefunctions and eigenvalues, yj put and E p u t .  We might then follow an iterative 
procedure of some kind to obtain the self-consistent charge density nsc. The iteration 
would start by constructing a charge density from the output wavefunctions and their 
occupancies, let us call it nout. With n = nout the Hohenberg-Kohn functional in (1) is an 
upper bound to the self-consistent energy. The functional EHKs[nout] can be written in 
an alternative form, which we can get by substituting for the kinetic energy in terms of 
the eigenvalue sum, using the definition of the kinetic energy: 

~HKs[~out] = 2 fyt E put  - 
i 

+ j noutExc (nout) + E ~ ~ ~ .  (11) 

The other approximation I will discuss is the functional introduced by Harris (1985) and 
Foulkes (1987). It is obtained from the form in equation (11) if we replace all the explicit 
charge densities by nin. Denoting the Harris functional by EH it is 

This functional, regarded as a functional of n'", is stationary at the self-consistent charge 
density nsc. In practice it is a lower bound to the exact energy EHKs[nsc]. As discussed 
further below there is a plausible but non-rigorous argument to explain this. 

Subtracting EH[nin] from EHKS[nout] we find after some algebra 

Equation (13) is exact. We can expand the exchange-correlation energy E,, about nl" 

and make use of ( 5 )  so that to second order in nout - n"' 
EHKs[nout] - E;H[nl"] = t C(r,  r ' )  [noUt(r) - nLn(r)] [nout(r') - nl"(r')] (14) 1.i 
where we have written explicitly the r-dependence of the densities in order to make clear 
the meaning of the kernel C which is 

Now let us obtain expressions for the separate errors in EHKS[nout] and EH[nln] compared 
to the self-consistent energy EHKS[nsc]. The derivation closely follows Foulkes (1987) 
and Foulkes and Haydock (1989) but goes a bit further by obtaining completely explicit 
expressions for all the terms in the Taylor expansion of the energy. Considering the 
difference 

C(r, r ' )  = 1 / 1 ~  - ~ ' 1  + {d~,,[n(r)]/dn(r)>l.=.~" 6 ( r  - r ' ) .  (15) 



The Harris functional applied to aluminium 335 

we would like to express the kinetic energy difference in a form which is amenable to 
calculation. This can be done by making use of two separate stationary conditions which 
correspond to the effective independent particle problem and to the self-consistent 
problem respectively, namely 

(6T/6n)lnout + Veff[nCn] = 0 

(6 T/6n)ln sc + Veff[nsc] = 0. 

(17) 

(18) 

and 

Hence, expanding about the self-consistent density, 

- pxc (P))  (nout - n S C )  = 0. (19) 

By combining equations (13), (16) and (19) the following results can be obtained: 

+ higher-order kinetic energy terms (20) 

+ higher-order kinetic energy terms. (21) 
We note that the higher-order errors in (20) and (21) are entirely in T[n] and as we can 
see from equation (13) these higher-order errors are the same for each functional. 

To second order in the charge density differences (20) and (21) reduce to 

~ ~ ~ ~ [ n o u t ]  = EHKS[~~C]  + 4 C(r,  rr) [nout(r> - nin(r)l [nout(r') - nsc(rr)l (22) 

EH[nin] = EHKs[nsc] + i C(r,  r ' )  [nout(r) - nin(r)] [nin(r') - nSC(rr)] .  (23) J 
We see that the second-order error in the Harris energy differs from that in the HKS 
energy by the appearance of the factor (n'" - nsc) in place of (nout - nsc). 

3. Calculations 

The surface calculations were performed with a trigonal unit cell containing three 
aluminium atoms, representing a (111) slab consisting of three close-packed atomic 
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Figure 1. The valence electron charge density in aluminium. The atomic sites are identifiable 
by the concentric contours. The contours were obtained with the FARB-E-2D algorithm of 
Preusser (1989). (a )  Self-consistent calculation on a three-layer slab. (b )  Self-consistent 
calculation for the bulk. (c) Superposition of fitted atomic charge densities on a three-layer 
slab. 

layers. The bulk lattice parameter of 7.6 au was assumed in all the calculations. The 
height of the cell was chosen so that it could be filled by a further three layers of 
aluminium, Periodic boundary conditions were applied. Bulk aluminium was calculated 
with the same cell containing all six layers of atoms. Thus the slab calculations were 
actually performed with a supercell in which three layers of missing atoms separated the 
periodically repeated slabs. 

For the vacancy, a similar cell was used but doubled in the x and y dimensions and 
halved in the z direction. It contained 12 bulk atoms, of which one was removed to create 
the vacancy. Although this is a rather small supercell, certainly too small to relax 
the atoms around the vacant site, Gillan's calculations (Gillan 1989) suggest that the 
unrelaxedvacancy formation energy should be within about 0.1 eVof that of the isolated 
vacancy. 

The non-local, norm-conserving pseudopotential of Bachelet et a1 (1982) was used, 
together with the exchange and correlation function of Ceperley and Alder (1980) as 
parameterised by Perdew and Zunger (1981). In order to save computation time, the 
non-local d component of the potential and all higher 1 components were set equal to 
the p component. In this way only s non-locality has to be treated explicitly. The charge 
densities shown in figure 1 and the error analysis to be described used this approximation 
to the original pseudopotential. Including the d non-locality explicitly appeared to make 
no significant difference to the charge densities, but it changed the surface energy by 
0.15 eV per surface atom. For this reason the subsequent calculations, including the 
relaxation of the interlayer spacing and the vacancy calculations were made with the full 
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non-local pseudopotential. A useful saving in time was also achieved by using a separable 
form of the pseudopotential, as discussed by Kleinman and Bylander (1982). 

Brillouin zone sampling used 12 k-points, two sets of the 6 given by Chadi and Cohen 
(1973) for hexagonal symmetry, displaced in the z direction by 4 and $ of the zone edge 
2 n / c .  The wavefunctions were expanded in plane waves up to a cutoff of 8 Ryd. 
Increasing the cutoff to 12 Rydbergs changed the calculated surface energy of 0.427 eV 
per surface atom by only 0.002 eV. The charge densities shown in figure 1 were calculated 
with the higher cutoff. For the self-consistent calculations, the wave-functions were 
relaxed by the modified steepest-descents version of the Car-Parrinello method 
described by Payne et a1 (1989a). If we denote by E(N) the energy of the cell with N 
atoms, we have for the surface energy per surface atom 

and for the unrelaxed vacancy formation energy 

Total energies EH[n'"] were calculated with the Harris model assuming in the first 
instance a superposition of atomic charge densities. From the output wave functions the 
output charge density was constructed and the HKS energy was evaluated. Finally, the 
self-consistency procedure of Payne et a1 (1989) was followed, to minimise the HKS 
functional. In fact the function actually minimised was the fictitious free energy A as 
described in the previous section, from which the best estimate of the zero-temperature 
HKS functional was obtained. A second initial charge density was constructed by super- 
imposing what we refer to as renormalised atoms. These were first of all constructed by 
fitting the atomic charge densities with three Gaussians, the main effect being to reduce 
the size of the tails of the atomic charge densities. EH[n'*] and EHKs[no"'] were calculated 
as before. The results are shown in table 1. 

The improvement in EH[n'"] and EHKs[nout] achieved by renormalising the free atoms 
is dramatic. The fitting of the atomic charge density was not designed to produce this 
result, so a more systematic approach could be expected to do even better. The approach 
I followed was to multiply the free atom charge density by a factor 

p and the cutoff radius r, were varied to maximise the Harris functional for the three- 
layer slab EH(3). We are exploiting here the hypothesis that the Harris functional is a 
lower bound to the self-consistent energy. The maximisation does not need to be very 
accurate to find a renormalised atom with gives a very good EH.  We find with p = 5 
and r, = 4.5 (au) that EH(3) = - 168.975 eV compared to the self-consistent EHKS(3)  = 
-168.973 eV. The new renormalised atoms were then used with the fully non-local 
pseudopotential and the total energy of the three-layer slab was calculated as the 
interplanar spacing was varied. Results are shown in figure 2, which compares EH(3) for 
the free and renormalised atom densities with the self-consistent results. The variation 
of the H and HKS functionals with the initial charge density is illustrated by plotting the 
two approximations in figure 3. 

We find that the Harris unrelaxed vacancy formation energy with the free atom 
charge densities is 0.863 eV. With the renormalised atoms it is 1.046 eV. The self- 
consistent result is 1.056 eV. 

Finally, I calculated the energy of a dimer, with the bulk interatomic spacing. The 
periodic cell was chosen so that the repeated dimers were separated by 22.8 au. The self- 
consistent energy was - 107.106 eV, the Harris energy with free atoms was - 107.489 eV 
and the Harris energy with renormalised atoms was -107.255 eV. 

7 = @(3) - 4 E(6) 

E{ = E(11) - E E(12). 

(24) 

(25)  

A/(eP(r-rC) + 1). (26) 
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Figure 2. Total energy of the three-layer slab as a function of the surface relaxation 
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Figure 3. Errors in the Harris and HKS functionals as a function of rc (equation (26)). Units 
are eV. Full curve: EH[ntn] - EHKS[n"]; broken curve: EHKS[nout] - EHKs[nsc]. 

4. Discussion 

Let us first consider the results shown in table 1. We see that neither of the non-self- 
consistent energy functionals EH[&] or EHKS[nout] is reliable for calculating the surface 
energy using the free atom input charge density. The bulk energy is well described 
by either functional but there are significant errors in the calculated slab energies. 
Furthermore, the error in the slab energy is significantly greater with the HKS functional 
than with the H?. We first discuss these rather disappointing findings and then we discuss 
how the Harris functional can be greatly improved by using renormalised atoms. 

t Very similar calculations and conclusions have recently been published by Read and Needs (1989). 
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Table 1. Energies calculated for the 3 atom cell (the slab) and the 6 atom cell (the bulk). The 
renormalised atom refers to the triple Gaussian fit to the atomic charge density. Units are 
eV per unit cell except for the surface energies y which are in eV per surface atom. Note that 
these results were obtained with the non-local d component of the pseudopotential set equal 
to thep component. 

Free atoms Renormalised atoms 

3 atom slab EHKs[nsc] 

EH[n'"] 

6 atom bulk EHKs[nsc] 

EH[ nl"] 

y EHKs[nsc] 

EH[n'"] 

EHKS[noutI 

EHKS[n0"'I 

EHKS[nautl 

- 168.977 
- 167.192 
-169.455 

- 339.054 
-339.050 
-339.151 

0.275 
1.167 
0.060 

- 168.977 
-168.969 
- 169.031 

- 339.054 
-339.050 
-339.144 

0.275 
0.278 
0.271 

Table 2. Errors in the H and H K S  functionals for the three layer slab, starting from the 
superimposed free atom charge densities. Units are eV per unit cell. (a )  Direct evaluation 
of error by subtraction of total energies. (6) Error to second order in charge density from 
(20)-(21). (c) Error omitting 3rd and higher orders in T[noU'] - T[nsc]. 

1.78 
1.81 
1.80 

It is also noteworthy that the Harris energy always lies below the self-consistent 
energy. The HKS energy must always lie above the self-consistent energy from the 
variational principle, but we know in advance only that the Harris energy is stationary 
when the input charge density equals the self-consistent charge density. 

We can understand these results by considering the expressions for the errors in H 
and HKS energies, equations (15) and (20)-(23). The Harris energy EH[nln] differs from 
the HKS energy EHKs[nout] only by the appearance of the factor (n'" - nsc) in the integrand 
of equation (23) instead of the factor (nout - nsc). It is plausible that the sign of these 
factors is different over the important part of the range of integration because there is a 
tendency for the output charge density to overshoot the self-consistent charge density. 
We cannot make this argument into a rigorous proof that the Harris functional is a 
variational lower bound to the exact energy, but in all calculations reported here for the 
vacancy and surfaces and for other published calculations referred to previously it has 
turned out to be true. The question of why the H energy is better than the HKS energy 
for the surface can be answered with references to tables 2 and 3. 

Firstly table 2 shows that the error in these functionals even with the free atom charge 
densities is well described by the second-order terms (22) and (23). Results (c) were 
calculated from equations (20) and (21) omitting third- and higher-order errors in the 
kinetic energy functional only, so the residual error, the difference between (a) and (c) 
is only due to kinetic energy terms. 

Table 3 shows the electrostatic contribution to the errors given in row (a) of table 2. 
That is the part due to the Coulomb term in C(r, r') (see equation (15)). It is helpful to 



340 M W Finnis 

Table 3. Electrostatic contribution to the errors in the H and HKS functionals for the three 
layer slab. Units are eV. (a) Lowest Fourier component, t 2 n / c .  (b)  Lowest two Fourier 
components, +.2n/c, f4n/c .  (c) All contributions. 

(a) -0.37 
( b )  -0.40 
(4 -0.77 

1.21 
1.87 
1.97 

think of these terms in reciprocal space, in which the Coulomb term scales as g-2. The 
contributions of the two lowest Fourier components of the electrostatic error, which are 
normal to the slab, are shown in table 3. Comparing rows (a) of table 3 and table 2 we 
see that most of the error in the non-self-consistent energies comes from the longest 
wavelength electrostatic component (g = +2n / c ) .  Furthermore the Fourier com- 
ponents of factors involving nout will be largest for long wavelengths, since they can be 
thought of as the response to an error in the input potential, which is the error in the 
input charge density multiplied by the Coulomb factor g-2. The appearance of two nout 
factors in EHKs[nout] and only one in EH[ni"] explains the smaller error in EH[ni"]. Figure 
3 illustrates this for a particular variation of the charge density. For bulk crystal there 
are no such long-wavelength components of charge density or potential, so the errors are 
restricted to the contributions from higher Fourier components and are correspondingly 
much smaller. 

The renormalised atoms have the property that these long-wavelength errors in 
the input density, and hence the input error in the potential, are much smaller. The 
variational principle gives us a much more accurate energy than one might have expected 
simply by looking at the charge densities shown in figure 1. The superimposed atomic 
charge density, even renormalised, is quite different to the self-consistent charge density 
for the slab, which within the surface layer actually looks very similar to that of the bulk 
crystal. 

Although these may be the first total energy calculations which make use of renor- 
malised atoms, the idea of renormalising atoms at the surface is not new. Weinert and 
Watson (1984) calculated the surface dipole contribution to work functions by using 
overlapping spherical atomic charge distributions and found them to be systematically 
too large. They found that renormalised atoms with contracted tails gave much improved 
values for the dipole barriers. Their renormalised atoms were constructed by solving for 
the atomic charge density with the atom inside a spherical constraining potential. 

We see in figure 2 that the renormalised atoms give a good account not only of the 
total energy but also of the surface relaxation, which is inwards for this slab. This 
direction of relaxation is in agreement with the sign of the forces in the pseudopotential 
calculations of Batra et a1 (1986) but disagrees in sign with the calculation of Feibelman 
(1983) who used a LCAO method with Gaussian basis functions. On the other hand our 
surface energy of 0.43 eV/surface atom (unrelaxed) is close to Feibelman's 0.39 eV 
(relaxed) and lower than the 0.5 eV of Batra et a1 (unrelaxed). The most accurate 
calculation of the surface energy of the Al(111) surface is probably that of Payne et a1 
(1989b), who used a 15 Ryd cutoff, 6 layers of atoms, and obtained 0.42 eV/surface atom 
(unrelaxed). Also shown in figure 2 is the energy versus interplanar spacing calculated 
with the Harris functional and free-atom charge densities. The error in the latter is not 
great in percentage terms, but too great to be useful for an estimate of the surface energy, 
which is obtained by subtracting large numbers. Furthermore the estimate of -7% for 
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the inward surface relaxation with the free-atom Harris functional is significantly greater 
than the -3% predicted with both the self-consistent and renormalised atom Harris 
calculations. 

Finally we should ask if the renormalised Harris atoms are transferable; do they also 
work for defects other than the (111) surface. As further evidence we so far have the 
vacancy calculations. The formation energy we have obtained (1.056 eV) is somewhat 
higher than experiment (0.66 eV) and the only previous realistic calculation (Gillan 
1989) (0.56 eV). Apart from the neglect of relaxation, the main reason for this is probably 
the small unit cell. It may also be the case that a better convergence with cell size could 
be obtained by calculating at constant volume per atom, as Gillan did, rather than at 
constant lattice parameter, but this remains to be investigated. For the present purpose 
of assessing the energy functionals these systematic errors are not important. The 
vacancy calculations show that the error in using the renormalised atoms is only 0.01 eV, 
whereas the free-atom charge densities give an error of 0.2 eV. This leads us to suggest, 
with some caution, that the renormalised atoms might give an acceptably accurate 
energy for a range of defect calculations. 

Even the dimer energy is better described by the renormalised atoms (error = 
-0.15 eV) than the free atoms (error = -0.38 eV). The renormalisation has the effect 
of setting up more charge between the atoms, along the nearst-neighbour bonds. The 
self-consistent charge density is also more heaped up in the bonds than that of the 
free atoms, as bonding orbitals are occupied. In this way we can understand how the 
renormalised atoms reduce the error. In general the lowering of the energy eigen-value 
of a bonding orbital compared to that of separate atomic orbitals means that the 
molecular orbital decays more rapidly into the space away from the atoms. The renor- 
malised atoms are designed to mimic this effect. 

Conclusions 

I have made self-consistent calculations and compared the results with the Harris and 
HKs functionals for the cases of an aluminium surface and vacancy. The charge density 
constructed by overlapping free atomic charge densities leads to rather good total 
energies with the approximate functionals. However, the errors in the surface energy and 
vacancy formation energy with reference to self-consistent calculations are unacceptably 
large with both functionals, and greater in the case of the HKS functional. Explicit 
expressions have been derived for the errors in these functionals which were evaluated 
for the test case of a three layer slab. It was found that the errors are associated with the 
electrostatic energy of the longest-wavelength Fourier components of the errors in the 
charge density. The HKS energy is less accurate because its error involves two factors of 
nout compared to one in the case of the Harris functional. The error in nout is especially 
important at long wavelength (small g-vector) since it is a response to the Coulomb 
potential g-* of the error in the initial guessed charge density. These long-wavelength 
components are absent in bulk crystal calculations. 

The errors can be made negligible if we multiply the free atomic charge density by a 
function which decreases the size of the tail. The charge density must then be rescaled 
to conserve the total charge. A scaled Fermi function works very well for this purpose. 
The energy as a function of surface relaxation is well reproduced by the renormalised 
atoms and the Harris functional (figure 2). I initially thought that these renormalised 
atoms which seem to describe correctly the long-wavelength components of the charge 
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normal to the (111) slab would be very crystallography specific and perhaps of no use in 
other situations. However, the same renormalised atoms and the Harris functional also 
reproduce the result of a self-consistent calculation of the vacancy formation energy 
with an error of 0.01 eV. Even for the case of a dimer, the error is more than halved by 
using the renormalised atoms. It seems that if the renormalised atoms are optimised for 
a given defect, in the present case the unrelaxed (111) surface, then the variational 
principle is enough to make them work for other defects or atomic configurations. 

The conclusion is that these or similar renormalised atoms can be useful in the 
calculation of defect energies in other metallic systems, and especially in systems in 
general for which pseudopotentials and plane-wave basis sets are inappropriate, for 
example in transition metals, where self-consistent calculations may still be too time 
consuming compared to non-self-consistent calculations. The rule that the Harris func- 
tional is bounded above by the self-consistent energy suggests that ehe best shape for 
the renormalised atoms might be found by maximising the Harris functional with respect 
to some shape parameters (such as the /3 and r, used to scale the free atomic charge) for 
a given set of atomic coordinates. One could then use thern to explore the total energy 
as a function of atomic positions. 
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